The future of Railway Mobile Communications

Chiel Spaans UIC
UIC: the International Union of Railways

- 200 members on all continents
 - Integrated (State) Railways
 - Train Operators
 - Infrastructure Managers
 - Railway Service Providers
 - Public Transport Companies

- Main tasks: standardization, coordination, lobbying
Today’s standard: GSM-R

- Standard GSM voice and data features, plus:
 - Groupcalls, Broadcast calls, Fast call setup
 - Location dependent addressing, Functional addressing
 - 5 priority levels
 - Tested up to 350 km/h
 - GPRS/EDGE

- Mandatory in Europe for Interoperability
 - TSI: Technical standard for interoperability
 - Eirene FRS and SRS

- 2x4 MHz in 900 MHz band (EU, Asia) or 1800 MHz
- First full operational network in 2003 (NL)
- Railway internal usage only (no public service)
Railway specific applications

- **Safety related voice communication:**
 - Traindriver – Traffic Control
 - Traindriver – Shunting staff (train movements on yards)
 - Railway Emergency Call in case of immediate danger

- **European Train Control System for signalling**
 - Circuit switched and GPRS data communication
 - Continuous connection Train- Ground
 - High QoS demands

- **Operational Support Communication**
 - Onboard, station and security staff

- **Data communication applications**
 - Passenger information (displays etc.) on platforms
 - Remote Train diagnostics
 - Stationary telemetry and infra status monitoring
GSM-R Today

- GSM-R is in an implementation phase all over Europe
 - Approx 70,000 of 150,000 km of railway lines are covered in 2011
 - “only” 200,000 mobile users of which approx 50,000 mounted in trains
- Also deployed in Asia, Australia
 - Another 150,000 km potential

© UIC Rail System 2010
GSM-R International Operations

- All European GSM-R networks are interconnected
- GSM-R Roaming is essential for border crossing traffic
- Coordinated by UIC
- Roaming with public networks is also used for fallback or coverage extension

Source: ENIR, NMG
Other Railway Mobile Comms

- **Short range radio**
 - Shunting
 - train staff, station staff, security staff

- **Tetra**
 - Mainly used by other public transport

- **Public mobile networks:**
 - Train staff, station staff
 - Passenger information displays in trains
 - Tracking and tracing of trains
 - Support data applications for train operators
 - Passengers using voice and mobile internet

- **Overall conclusion:** very fragmented mobile communication playing field
Future Developments (1)

- **Phasing out of GSM-R**
 - GSM-R will be supported up to 2025
 - Migration towards Successor takes approx 5 years in EU
 - Specification, development and legal position (TSI) takes at least 5 years
 - So the work on successor has started in 2010

- **Railway Specific application developments:**
 - Railway Safety Voice comms and ETCS data will remain: low profile but mission critical, also on the long term
 - Support data applications for train, station and security staff will expand: capacity limitations in existing GPRS/EDGE
 - Video surveillance, Driver look ahead real time video will come and are the most demanding applications for Broadband
 - *Video cannot be supported by GSM-R/GPRS: broadband is needed within a couple of years. Mission Critical?*
Future Developments (2)

- Scenario 1: Dedicated network Railways
 - Supports MC Voice and data
 - Supports broadband
 - Available from 2018
 - Realistic?

- Scenario 2: Public networks only, fully standard:
 - MC voice is simplified: no group calls but eg multipartycalls
 - MC data and all other applications will be supported

- Scenario 3: Hybrid solution
 - Dedicated application layer; MC voice is transferred into an app
 - Radio access layer is mixture of dedicated (on critical locations and lines) and public
 - Variant: also access layer is dedicated, but shared with other Critical Communication communities
Next Steps (1)

- Evaluate existing Railway Specific needs
 - Group/broadcast/emergency calls still needed on long term?
 - Define minimum QoS, performance, capacity
 - ETCS data will migrate towards IP

- Define Future needs
 - What capacity/performance of the radio access layer is needed, where and when
 - Problem: poor vision on future at Train Operators and other customers
 - Result: Draft User Requirement Specification (November 2011)
Next Steps (2)

- **Investigate the overall architecture**
 - Strict separation of Application layer and Mobile Access layer
 - Mission Critical voice transferable into an App?
 - Own network? Hybrid with Public? Shared with other PMR
 - Why not one European network?

- **Select candidate technologies**
 - Single or Multi technology?
 - What Spectrum? Own spectrum or shared? Single spectrum or a multispectrum all over Europe?
 - *Study: Report on LTE for Railways (December 2009)*
Next Steps (3)

- Investigate synchronization with other PMR
 - Common Functional Requirements?
 - Mission critical voice long term needs (when TETRA and GSM disappears)?
 - Common Broadband needs?
 - Time schedule?

- Investigate potential cost optimization
 - One non-commercial dedicated network, sponsored by Government?
 - At least: sharing of infrastructure
 - Potential: sharing of frequencies (only railways coverage needed)
 - Are public networks candidate for non-critical broadband or as fallback? Costs/riscs
Summary

- **Define future needs**
- **Syncronize with other CC**
- **Select candidate technologies**
- **Investigate cooperation in Mobile access Networks**

Narrow Band Mission Critical
- Train safety voice
- ETCS data
- Staff voice

Broadband Wireless
- Driver Look Ahead CCTV
- Staff data support applications
- Video Surveillance
- Ticketing, seat reservation
- Real time passenger information

Chiel Spaans – UIC

Workshop Broadband Critical Communication Barcelona
14-15 February 2012
Questions?

chiel.spaans@prorail.nl